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We have obtained the firstonclusve chemical evidence
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control nitrate estedl) with a phenylsulfinyl radical leaving
group at C2 to more closely model the enzyme process.
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consistent with the controversial first two steps in the mechanism  Bu,SnH (2 equiv)/AIBN (2 equiv)/benzene was added (24 h,
postulated to occur during reductive deoxygenation at the active syringe pump) to a refluxing solution &f(Scheme 2) in benzene.

site of ribonucleotide reductase%.Generation of a proximal
primary aliphatic thiyl radical in a tetrahydrofuran model sub-
stituted at C2 with a radical leaving group results in abstraction
of H3 and elimination of phenylsulfinyl from C2.

The concentrated mixture containét NMR) vinyl ether9 and
3-O-methyl-2-(phenylsulfinyl)-containing products-2:3). Chro-
matography gave the somewhat unstable and volatile dihydrofuran
9 (21%) and 1,4-anhydro-2,5-dideoxy€-methyl-2-(phenyl-

Ribonucleotide reductases catalyze the deoxygenative reductiorsulfinyl)-6-thio-b-ribo-hexofuranitol (0, 52%). Formation o®

of ribonucleoside 5(di or tri)phosphates to'2leoxynucleotides
and provide the only de novo source of DNA components. The
ribonucleoside 5diphosphate reductase (RDPR) fr@&scherichia
coli has been studied extensivélyts R1 homodimer subunit

and10is consistent with attack of a tributylstannyl radical ®n
to give6, followed by double homolytig-elimination to generate
thiyl radical 7 and ethylene. Intramolecular [1,5]-hydrogen transfer
of H3 to the 6-thiyl radical and elimination of phenylsulfinyl

contains substrate and allosteric binding sites and cysteine residuegadical from8 would produced. Coupling of7 with tributylstannyl
required for catalysis. The R2 homodimer contains a diiron chelate radical, and S Sn bond cleavage upon chromatography, would

and an essential tyrosyl free radiéat. Mammalian and certain

give 10. Conversion of7 to 9 represents the first “relevant”

viral-encoded RDPRs are similar. A postulated radical-cascade biomimetic modeling of the proposed abstraction of H8m
mechanism for substrate reduction invokes long-range electronC3 of ribonucleotides bySCys439 of RDPR.

transfer betweemOTyr122 (in R2) and Cys439 (in R1) at the
active site interface. ThesCys439 radical generated in proximity
with the 8 face of the substrate is propodédo abstract the '3
hydrogen atom as the first substrate-activation step (Schéme 1
Abstraction of H3from 1 by a primary aliphatic thiyl radical to
generate2 has aroused debat®pwing to the absence of an
appropriate chemical precedent.

We have shown that aminyl or oxyl radicals at C6 of
hexofuranosyl models abstract H3 by a [1,5]-hydrogen $Rift.
Treatment (BeSnD/AIBN/benzeneX) of 6-azido or 60-nitro

Formation of 6-$ radicals is assured by indirect Barton
Robin$ generation viaS{2-[(phenoxythiocarbonyl)oxy]ethy!
group removal, and high dilution reduced rates of bimolecular
coupling of tributylstannyl and thiyl radicals. Furan models
minimize steric/stereoelectronic effects at C1 and preclude radical
coupling with nucleobases (C8 of adenine, C6 of urdcihe
6-O-nitro esterl1 served as a positive control with demonstrated
ability to abstract H3 (via generation of a 6-@adical)}® and
the sulfoxidell was thermally stable in refluxing benzene for
72 h.

precursors produces C3 radicals that undergo deuterium transfer - Addition (5 h, syringe pump) of BynH (2 equiv)/AIBN (2

from the stannane to give 3H] product(s) The absence of (H
— D) exchange at C3 with a 6e3adical in models that operate
with 6-Os (60—80%) or 6-N (~20%) radicals was troubliny.
However, RDPR executes abstraction of HBd a [1,2]-electron
shift coupled with hydrogen transfer from O% O2Z and
“irreversible” loss of water from C2o give the stabilized oxallyl
radical3 (Scheme 1§.We now have synthesized thioetfefand
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equiv)/benzene to a refluxing solution b1 in benzene resulted
in exclusive formation of vinyl ethefl4. Benzoylation of the
somewhat volatilel4 gave 15 (69% from11). Formation of14

is consistent with abstraction of H3 (1,5-shift) to the 6-oxyl radical
of 12 andg-elimination of phenylsulfinyl froml3.1¢ The stability

of the phenylsulfinyl radical precludes its participation in chain
reactions involving BgSnH. Stoichiometric quantities of initiator
were required, and only trace formationlfwas observed with
10—15% molar ratios of AIBN.

The abstraction of H3from C3 by ¢SCys439 has remained
controversiaf® and it is often assumed that thiyl radicals are poor
hydrogen abstractors because thiols are excellent hydrogen donors.
However, the chemistry of sulfur radicals is compt&Bond
dissociation energies for certain R8 and RR(HO)C—H
systems are simila&f;1tbut rates of hydrogen abstraction by thiyl
radicals (RH+ ¢SR— ¢R + HSR) are generally~10* slower
than the reverse donation of hydrogen to alkyl radicals by
thiols 1112
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aEarly steps of the StubbeSiegbahn mechanism for substrate reduction with RBPR.
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a(a) BwuSnH/AIBN/benzeneX. (b) BzCI/DMAP/pyridine/CHCl,.

It was shown in 1966 that treatment @fhydroxy thioethers
with thiyl radicals gave thiols and keton&sand evidence for
hydrogen abstraction by thiyl radicals has been nétéé!4
However, Roberts recently demonstrated that highly electrophilic
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pp 367+376.
(13) Huyser, E. S.; Kellogg, R. Ml. Org. Chem1966 31, 3366-3369.

thiyl radicals such asSSiPh efficiently catalyze the racemization
of (R)-2-(acetoxymethyl)tetrahydrofuran (wehydrogen abstrac-
tion), whereas aSCys(OMe) model was “totally ineffective” as

a catalyst*® Thus, hydrogen abstraction by thiols in isolated
models, taken out of context of the aliphatic cysteinyl radical
abstraction of a proximal secondary carbinol hydrogen on a
furanosyl ring?® does not provide compelling evidence for such
a process at the enzyme active site.

In summary, we have preparéand demonstrated hydrogen
abstraction from C3 by an aliphatic thiyl radical with accompany-
ing elimination of phenylsulfinyl radical from C2 to gener&e
(and a parallel positive control with oxyl radical generation from
11 to produceld). This biomimetic modeling of abstraction of
H3' by «SCys43%onclusiely demonstrates the feasibility of step
1 in Scheme 1 for the first time. It is compatible with Siegbahn’s
calculations that indicate a “concerted” [1,2]-electron shift from
C3 to C2, hydrogen shift from O3to O2, and elimination of
hydrogen-bonded water from GRith minimal charge separation.
Hydrogen transfer from Cys225 to C& thea-face of3 produces
the 2-deoxy-3-ketonucleotide intermediaté in the reductive
deoxygenation sequence executed by the remarkable RDPR.
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